danesh gozar

تحقیق ومقاله دانشجویی

danesh gozar

تحقیق ومقاله دانشجویی

دانلود{ تاثیرات بانک خازنی و جبران گرها }

تاثیرات بانک خازنی و جبران گرها

تاثیرات بانک خازنی و جبران گرها

دانلود تاثیرات بانک خازنی و جبران گرها

تاثیرات بانک خازنی و جبران گرها
دسته بندی برق ،الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 2843 کیلو بایت
تعداد صفحات فایل 64

تاثیرات بانک خازنی و جبران گرها

در ابتدای این پروژه به معرفی تعاریفی کوتاه و اجمالی در مورد خازن و ساختمان آن و همچنین چگونگی رفتار آن در سیستم های الکتریکی پرداخته شده است.پس از معرفی کلیاتی در مورد خازن به بررسی ارتباط ضریب توان واصلاح آن و ، توان اکتیو و راکتیو و همچنین به توضیحاتی در زمینه اصول اصلاح ضریب توان در مسیر اجرای عملیاتی آن و جزئیاتی کوتاه در مورد مقدار خازن های مصرفی و چیدمان می پردازیم.

در بخشی از گزارش پروژه به تشریح عملکرد بانک های خازنی در حالت عادی و یا در شبکه های دارای هارمونیک می پردازیم و با ذکر تجهیزات بکار رفته در ساختمان آن به ادامه گزارش رهسپار می گردیم.و همچنین در بخش پایانی به اهمیت بانک های خازنی و اصلاح ضریب توان در حفاظت محیط زیست می پردازیم.

 

فهرست مطالب

 

چکیده

1

 

مقدمه

2

 

فصل اول-خازن وساختار

3

1-1

توان ها

3

1-2

ضریب توان

6

1-2-1

ضرورت اصلاح ضریب توان

7

1-2-2

ضریب توان اقتصادی

7

1-3

خازن وساختار داخلی آن

9

1-3-1

خازن قدرت

9

1-3-2

مکانیسم عملکرد خازن

11

1-4

ظرفیت آزاد شده

15

1-5

انواع خازن در مدار

15

1-5-1

استفاده از خازن سری

16

1-5-2

خازن موازی

18

1-6

تقسیم بندی خازن ها

21

1-7

ضرورت خازن گذاری

22

1-8

تاثیر ضریب توان در تولید و انتقال انرژی

23

1-8-1

تاثیر ضریب توان در میزان جریان کشیده شده

24

1-8-2

تاثیر ضریب توان در قیمت ثابت تجهیزات

24

1-8-3

تاثیر ضریب توان در تجهیزات مورد استفاده

25

1-8-4

تاثیر ضریب توان در ولتاژ

25

 

فصل دوم - طراحی و بانکهای خازنی

26

2-1

عوامل موثر در طراحی

27

2-2

محلهای خازن گذاری

27

2-3

انواع بانکهای خازنی

28

2-4

تجهیزات بانکهای خازنی

29

2-5

مزایای استفاده از بانک های خازنی

33

2-6

ابعاد خازن ها و نحوه قرارگیری و نصب آن در مدار

35

2-7

تست خازن

36

2-8

انواع حفاظت در بانکهای خازنی

36

 

فصل سوم - جبران سازی

38

3-1

اصول واثر جبران سازی

38

3-2

جبران‌سازی

39

3-3

انواع جبران سازی

40

 

1-جبران‌سازی انفرادی.

40

 

2-جبران‌سازی گروهی

41

 

3-جبران‌سازی مرکزی

42

 

4-جبران‌سازی مخلوط

44

3-4

ادوات FACTS

44

 

فصل چهارم - هارمونیک

46

4-1

هارمونیک

46

4-2

محل به وجود هارمونیک‌ها

47

4-3

اثر بانک خازنی بر دامنة هارمونیک‌ها

48

4-4

طراحی بانک خازنی برای شبکه هارمونیکی

48

4-5

مقابله با هارمونیک‌ها

48

 

فصل پنجم - حفاظت از محیط زیست با اصلاح ضریب توان

50

5-1

خلاصه

50

5-2

کنوانسیون تغییرات محیط زیست

51

5-3

پروتکل کیوتور

52

5-4

حفاظت از محیط زیست با استفاده از اصلاح ضریب توان

53

5-5

طرح ملی خازن‌گذاری در شبکه‌های فشار ضعیف ایران

53

5-6

وضعیت موجود و برنامة توسعه در ایران

57

5-7

اثرات اقتصادی اصلاح ضریب توان

58

5-8

ضریب توان، میزان بارگذاری فعلی شبکه، تلفات شبکه

59

 

نتیجه گیری

60

 

منابع

61

 

وب سایت ها

61

 

فهرست اشکال و جداول

 

 عنوان صفحه

1-1

انتقال توان

3

1-2

دیاگرام قدرت

6

1-3

خازن قدرت

11

1-4

خازن 150 کیلووار.

11

1-5

جریان توان اکتیو -راکتیو

12

1-6

بانک خازن موازی

16

1-7

بانک خازن سری

17

1-8

سری کردن خازن در مدار

20

2-1

اتصال خازن به شبکه.

29

2-2

میزان تلفات نسبت به ضریب توان

34

2-3

میزان قدرت قابل انتقال به ضریب توان

35

3-1

دیاگرام اثر جبران سازی

39

3-2

جریان اکتیو و راکتیو در شبکه بدون تجهیزات جبران سازی

40

3-3

جریان اکتیو و راکتیو در شبکه به همراه تجهیزات جبران سازی

40

3-4

جبران‌سازی انفرادی

41

3-5

جبران‌سازی گروهی

42

3-6

جبران‌سازی مرکزی

44

3-7

جبران‌سازی مخلوط

44

4-1

یکسوساز تکفاز

47

4-2

جریان مغناطیس کننده ی ترانسفورمر

47

4-3

درایور موتور سه فاز

47

5-1

مقایسه تلفات شبکه آلمان با اصلاح ضریب توان

55

5-2

مقایسه حفاظت از محیط زیست با اصلاح ضریب توان

56

 

جداول

 

1-1

ضریب توان با افزایش توان اکتیو

8

1-2

ضریب توان مطلوب و ضریب توان واقعی

14

1-3

- توان ظاهری متناسب با ضریب توان برای توان اکتیو 100kw

24

2-1

اضافه ولتاژها

27

2-2

انتخاب پایه فیوز براساس قدرت خازن

30

2-3

انتخاب کابل برای خازن های فشار ضعیف

31

5-1

برنامة توسعه در ایران

57

5-2

خازن‌گذاری

58

 

دانلود تاثیرات بانک خازنی و جبران گرها

دانلودبرترین{ طراحی سیستم ارائه نوبت جهت امور بانکی }

طراحی سیستم ارائه نوبت جهت امور بانکی

طراحی سیستم ارائه نوبت جهت امور بانکی

دانلود طراحی سیستم ارائه نوبت جهت امور بانکی

طراحی سیستم ارائه نوبت جهت امور بانکی
دسته بندی برق ،الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 1234 کیلو بایت
تعداد صفحات فایل 47

طراحی سیستم ارائه نوبت جهت امور بانکی

دراین پروژه یک کلید برای مشتری قرار دارد که با هربار فشار دادن توسط مشتری ها شمارهی نمایشگر مشتری یک عدد افزایش می یابد ونوبت می دهد و هنگامی که به عدد نه رسید مجددا از شماره ی یک نوبت می دهد. همچنین سه کلید برای سه اپراتور های باجه های بانک که با هربار فشار دادن یکی از اپراتور های بانک شماره ی بعدی را در نمایشگر اپراتور مربوطه نمایش می دهد و به ترتیب نوبت مشتری ها را به سوی اپراتور مربوطه فرا می خواند.

فهرست مطالب

چکیده : نحوه کار دستگاه

کاربرد 1

مقدمه و تاریخچه..1

فصل اول : میکرو پروسسورها ..3

1-1 انواع میکروپرسسورها..4

2-1 الکترونیک در زندگی امروز..5

3-1 سیستمهای الکترونیکی..6

4-1 مدارهای خطی و مدارهای رقمی..6

5-1 مختصری راجع به AVR..7

6-1 طراحی برای زبانهای C و BASIC..8

7-1 خصوصیات ATMEGA16/ATMEGA16L9

1-7-1 خصوصیات جانبی10

2-7-1 فیوز بیت های ATMEGA1612

8-1 بررسی پورت های میکرو کنترلر14

1-8-1 پورت B14

2-8-1 پورت C17

3-8-1 پورت D18

9-1 مدار داخلی ATMEGA1621

فصل دوم : سخت افزار 22

1-2 طرز کار المان های مدار23

2-2 شماتیک ونحوه اتصالات قطعات25

3-2 تصویر مونتاژ شده مدار26

فصل سوم : نرم افزار27

1-3 برنامه 28

2-3 شرح برنامه31

طرح پروتل مدار35

ضمائم

فهرست منابع

 

دانلود طراحی سیستم ارائه نوبت جهت امور بانکی

دانلودبهترین مقاله: مقره

مقره

مقره

دانلود مقره

مقره
دسته بندی برق ،الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 14809 کیلو بایت
تعداد صفحات فایل 101

مقره

خطاهای ایجادشده بر روی خطوط انتقال فشار قوی می توانند به خاموشی های گسترده منجر شوند و در نتیجه زیانهای اقتصادی وسیعی را باعث گردند . مهندسین بهره بردار باید قابلیت اطمینان بهره برداری را مدنظر قرار دهند و در عین حال تاکید زیادی بر روی مهندسی صحیح سیستم قدرت داشته باشند . یک مؤلفه کلیدی قابلیت اطمینان در خطوط انتقال ، انتخاب مقره های فشار قوی مناسب است.

چون مقره ها عایق بسیار خوبی می باشند، لذا از آنها برای جداکردن سیم حامل جریان از پایه و کنسول استفاده می شود و در نتیجه پایه و کنسول بدون برق می مانند.تنها عیبی که مقره ها دارند این است که چون آنها را از چینی و شیشه می سازند، در اثر بی احتیاطی ، ضربه و یا عوامل جوی می شکنند و یا ترک بر می دارند. مقره ها مانند کابل های زمینی برای سطح ولتاژهای معینی درست شده اندکه هر کدام برای ولتاژ بخصوصی مورد استفاده قرار می گیرند.

استفاده بسیار وسیع از مقره های پلیمری در سیستمهای انتقال و توزیع,آنرا به سمت یک جستجو وکاوش پیشرفته برای قیمت پایین با کیفیت بالا سوق داده است. این جستجو و کاوش با استفاده از رزین های پلیمری و کامپوزیتی ، منتج به اجرای بهتر و مزایایی در قیمت گردیده است. هر چند در حالی که گاها ً بعضی خواص عایقی در این نوع مقره ها

بهبود یافته اند ، اما بعضی دیگر از خواص مقره ها ، نمایش ضعیفی داشته اند.

در این پروژه سعی شده است که ضمن معرفی انواع مقره ها، به طرز ساخت ،کاربرد ، مزایا و معایب هر یک از آنها نیز اشاره شود. همچنین شکل های مربوط به انواع مقره ها و مشخصات فنی آنها در ضمیمه آورده شده است.

فهرست مطالب

مقدمه ...... 5

جنس مقره ها 7

انواع مقره ها 12

شکست الکتریکی در مقره ها 21

آزمایش مقره های خطوط هوایی 22

مقره های کامپوزیت در مقایسه با مقره های پرسیلین 27

 ضمیمه . 31

نمونه هایی از گزارش آزمایشات صورت گرفته بر روی انواع مقره --- 32

مشخصات فنی برخی از مقره ها 77

تصاویر مقره های مختلف 92

دانلود مقره

دانلود{ طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی }

طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

دانلود طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی
دسته بندی برق ،الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 2149 کیلو بایت
تعداد صفحات فایل 99

طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کنندهPIکلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کنندهPI با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کنندهPI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.

 کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI– کنترل کننده فازی- الگوریتم ازدحام ذرات

فهرست مطالب

چکیده 1

فصل1: مقدمه

2

۱-۱ طرح مسئله

2

۲-۱ اهداف تحقیق

۳

۳-۱ معرفی فصل های مورد بررسی در این تحقیق

۴

فصل2: انرژی باد و انواع توربین های بادی

۵

۱-۲ انرژی باد

۶

۱-۱-۲ منشا باد

۶

۲-۱-۲ پیشینه استفاده از باد

۷

۳-۱-۲ مزایایانرژیبادی

۸

۴-۱-۲ ناکارآمدیهایانرژیبادی

۹

۵-۱-۲ وضعیتاستفادهازانرژیباددرسطحجهان

۱۰

۲-۲ فناوری توربین های بادی

۱۱

۱-۲-۲ توربینهایبادیبامحورچرخش افقی

۱۲

۲-۲-۲ توربینهایبادیبامحورچرخش عمودی

۱۲

۳-۲-۲ اجزای اصلی توربین بادی

۱۴

۴-۲-۲ چگونگی تولید توان در سیستم های بادی

۱۵

۱-۴-۲-۲ منحنی پیش بینی توان توربین باد

۱۵

۳-۲ تقسیم بندی سیستم های تبدیل کننده انرژیباد (WECS)بر اساس نحوه عملکرد

۲۰

۱-۳-۲ سیستم های تبدیل کننده انرژیباد(WECS) سرعتثابت

۲۰

۲-۳-۲ سیستم های تبدیل کننده انرژیباد(WECS) سرعتمتغیر

۲۲

۳-۳-۲ سیستم های تبدیل کننده انرژیبادبر مبنایژنراتورالقاییباتغذیهدوگانه (DFIG)

۲۴

۴-۳-۲ سیستم های تبدیل کننده انرژیباد مجهز بهتوربین های سرعتمتغیربامبدل فرکانسیباظرفیتکامل

۲۶

فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات

۲۷

۱-۳ مرورری بر کارهای انجام شده

۲۹

۲-۳ کنترل DFIG

۳۳

۳-۳ مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتورالقایی تغذیهدوگانه

۳۶

۴-۳ مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتورالقایی تغذیهدوگانه (DFIG)

۴۰

۵-۳ الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO

۴۴

۶-۳ نتیجه گیری

۴۷

فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات

۴۸

۱-۴ بهینه سازی طراحی کنترل‌کننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)

۴۹

۱-۱-۴ نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO

۵۳

۴-۲ نتیجه گیری

۵۹

فصل پنجم: طراحی کنترل کننده فازی

۶۱

۱-۵ منطق فازی

۶۲

۱-۱-۵ تعریف مجموعه فازی

۶۲

۲-۱-۵ مزایای استفاده از منطق فازی

۶۳

۵-۲ طراحی کنترل کننده فازی

۶۴

۱-۲-۵ ساختاریککنترلکنندهفازی

۶۴

۱-۱-۲-۵ فازی کننده

۶۵

۲-۱-۲-۵ پایگاهقواعد

۶۶

۳-۱-۲-۵ موتور استنتاج

۶۶

۴-۱-۲-۵ غیر فازی ساز

۶۷

۳-۵ طراحی کنترل‌کننده فازی بهینه شده با الگوریتم PSO

۶۸

5-3-1 نتایج شبیه سازی

۷۲

فصل ششم: نتیجه گیری و پیشنهادات

78

۱-۶ نتیجه گیری

۷۹

۲-۶ پیشنهادات

۸۱

منابع و مراجع

 

فهرست جدول­ها

 

جدول ۱-۲: انواع توربین های عرضه شده در بازار

۱۱

جدول ۴-۱: اطلاعات شبیه سازی

۵۱

جدول ۲-۴: پارامترهای انتخابی الگوریتم PSO

۵۳

جدول ۳-۴: اطلاعات شبیه سازی

۵۳

جدول ۱-۵: پارامترهای انتخابی الگوریتم PSO

۷۳

جدول ۲-۵:پارامترهای بهینه شده کتترل کننده فازی با الگوریتم PSO

۷۳

فهرست شکل­ها

 

شکل ۱-۲ : تولید باد

۶

شکل ۲-۲: وسیله ای بر اساس طرح ایرانیان به منظور استفاده از انرژی باد [۱۰‍]

۷

شکل ۳-۲: ساختمانتوربینبادیمحورافقی [۱۱‍‍]

۱۳

شکل ۴-۲: توربینبادینوعداریوس (محورعمودی) [۱۱]

۱۳

شکل ۵-۲: نمایی از یک سیستم تبدیل انرژی بادی در توربین بادی با محور افقی [۱‍]

۱۴

شکل ۶-۲: دیاگرام سیستم بادی [۲]

۱۵

شکل ۷-۲: منحنی توان-سرعت باد یک توربین بادی زاویه گام قابل تنظیم ۱۵۰۰ کیلوواتی با سرعت قطع خروجی ۲۵ متربرثانیه [۲‍]

۱۶

شکل ۸-۲ : نمودار تغییرات بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۸

شکل ۹-۲: نمودار تغییرات بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]

۱۹

شکل ۱۰-۲: نمودار تغییرات و بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام ثابت ‌[۱]

۲۰

شکل ۱۱-۲: توربینبادیسرعتثابت

۲۱

شکل ۱۲-۲: آرایشی از توربینبادیباسرعتمتغیرمحدودبامقاومتمتغیررتور

۲۳

شکل ۱۳-۲: ساختمانتوربینبادینوع DFIG

۲۵

شکل ۱-۳: نمایی از عملکرد سیستم تبدیل انرژی باد

۳۴

شکل ۲-۳: ساختار کنترل کننده توربین بادی DFIG [۳۰]

۳۵

شکل ۳-۳: مدل دینامیکی سیستم قدرت تک ناحیه ای در حضور واحدهای تولید غیر سنتی (بادی)[۳۰]

۳۶

شکل ۴-۳: مدل دینامیکی توربین بادی دارای ژنراتور DFIG به منظور تنظیم فرکانس[۳۰]

۳۷

شکل ۵-۳: بلوک دیاگرام سیستم تنظیم فرکانس سیستم قدرت تک ناحیه ای در حضور توربین بادی DFIG [۳۰]

۴۱

شکل ۶-۳: شماتیک برداری روابط الگوریتم PSO

۴۵

شکل ۷-۳: فلوچارت الگوریتم PSO

۴۶

شکل ۱-۴: سیستم حلقه بسته

۵۰

شکل ۲-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI کلاسیک به ازای تغییر بار ، و

۵۱

شکل ۳-۴: سیستم حلقه بسته با اضافه کردن انتگرال مربع خطا

۵۲

شکل ۴-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه به ازای تغییر بار ، و

۵۴

شکل ۵-۴: مقایسه نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه و کلاسیک به ازای تغییر بار

۵۵

شکل 6-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PIکلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل7-۴: نمودار فرکانس با در نظر گرفتن کنترل کنندهPIبهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۶

شکل 8-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل 9-۴: نمودار فرکانس با در نظر گرفتن کنترل کنندهPI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۵۷

شکل ۱0-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی

۵۸

شکل ۱1-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی

۵۹

شکل ۱-۵: نماییازیککنترلکنندهفازی

۶۵

شکل ۲-۵: مثال هایی از توابع عضویت: (a) تابع z ، (b) گوسین، (c) تابع s، (d-f) حالتهایمختلفمثلثی، (g-i) حالتهایمختلفذوزنقهای، (j) گوسینتخت،(k) مستطیلی، (l) تکمقداری

۶۵

شکل ۳-۵: تابع عضویت خطا

۶۹

شکل ۴-۵: تابع عضویت مشتق خطا

۶۹

شکل ۵-۵: نمودار تغییرات سرعت توربین بادی برای کنترل کننده PI بهینه به ازای تغییر بار

۷۲

شکل ۶-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSOبه ازای ورودی اغتشاش

۷۴

شکل ۷-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSOبه ازای ورودی اغتشاش

۷۴

شکل ۸-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSOبه ازای ورودی اغتشاش

۷۵

شکل ۹-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSOبه ازای ورودی اغتشاش

۷۵

شکل ۱۰-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۱-۵: نمودار فرکانس با در نظر گرفتن کنترل کنندهفازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۶

شکل ۱۲-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازیبهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

شکل ۱۳-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازیبهینه برای کنترل سرعت توربین بادی به ازای تغییر بار

۷۷

 

دانلود طراحی و شبیه ­سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

دانلودتحقیق: شبکه های توزیع هوشمند برق

شبکه های توزیع هوشمند برق

شبکه های توزیع هوشمند برق

دانلود شبکه های توزیع هوشمند برق

شبکه های توزیع هوشمند برق
دسته بندی برق ،الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 499 کیلو بایت
تعداد صفحات فایل 168

شبکه های توزیع هوشمند برق

دولت­ها، قانون­گذاران و سازمان­های صنعتی به منظور بالا بردن حق خرید مصرف کنندگان، حمایت از خلاقیت­ها در تغییرات آب و هوایی و افزایش قابلیت اطمینان نیروگاه بزرگ آمریکای شمالی، یک "شبکه هوشمند" را پیشنهاد کرده ­اند. البته برای تغییرات مهم در برنامه ریزی، طراحی و عملیات نیروگاه بزرگ به یکپارچه سازی این شبکه هوشمند احتیاج است. در این گزارش، شبکه هوشمند و قابلیت اطمینان نیروگاه بزرگ تعریف می­شود و یک ارزیابی مقدماتی از یکپارچه سازی موفق شبکه هوشمند ارائه می­شود.

سیستم قدرت انبوه آمریکای شمالی بزرگ­ترین سیستم الکتریکی بهم متصل در جهان است. عملکرد معتبر آن بستگی به بکارگیری گسترده­ای ارتباطات زمان واقعی، نظارت و سیستم­های کنترل دارد. به هنگام تکامل سیستم قدرت انبوه، بسیاری از تکنولوژی­های هوشمند برای چندین دهه بکار می­رود.

ابتکارات در سیاست اخیر فدرال، دولتی و کشور باعث توسعه­ی تصور شبکه­ی هوشمند می­گردد که دارای فعل و انفعال، همکاری، کارایی، اعتبار و استحکام بیشتری است. در اصل، ویژگی­های شبکه­ی هوشمند شامل تجهیزات هماهنگ است که به موجب پیشرفت­ها در ارتباطات، سیستم­های هوشمند و تکنولوژی اطلاعت (IT) مهیا شده است که با سیستم­های موجود و جدید کنترل دارای سطح مشترک می­باشد. پروتکل­های ارتباطی انبوه هماهنگ در سیستم وسیع ابزارهایی برای حفظ سیستم پویاتری است که مزایایی را برای کاربران نهایی دارد و بصورت کارآمد از قابلیت اعتبار سیستم ارسال توسعه یافته مطابق با دریافت و تشخیص­های راحت استفاده می­کند. با توجه به پیشرفت­هایی در تکنولوژی شبکه­ی هوشمند، تکامل بی نظیر سطوح کنترل و اندازه گیری سیستم بسیار وسیع و گسترده است. تلاش­های زیادی در دهه­ی گذشته به منظور توسعه و پیشرفت دادن این زیرساخت شبکه­ی هوشمند صورت گرفته است که بخش مدیریت سهامدار نیز تشویق به انجام این کار شده است.

سیستم قدرت انبوه امروزی به منظور فراهم کردن سطح مناسب و کافی­ای از قابلیت اطمینان طراحی و بکار گرفته شده است. شبکه­ی هوشمند می­تواند از سطح مناسب و کارآمد قابلیت اطمینان حمایت کند حتی در هنگامی که صنعت با چالش بر عهده برآمدن از سیاست هیئت و رهنمودهای قانونگذاری که ویژگی­های سیستم قدرت انبوه ایالات متحده­ی آمریکا را تحت تأثیر قرار می­دهد و تغییر می­نماید روبرو باشد. موفقیت یکپارچه سازی و مجتمع سازی مفاهیم و تکنولوژی شبکه­ی هوشمند بسیار بستگی به قابلیت اطمینان سیستم قدرت انبوه موجود در طی تکامل خود دارد. این مثاله تمرکز خود را بر روی جنبه­های مختلف این موضوع اساسی جلب کرده است.

تأثیر کلی شبکه­ی هوشمند بر روی قابلیت اطمینان سیستم قدرت انبوه همچنان قابل مشاهده می­باشد. در حالی که وظیفه­ی شبکه­ی هوشمند افزایش نسبی قابلیت اطمینان است اما اگر قابلیت اطمینان سیستم قدرت انبوه را بصورت ضعیف بکار برد در این صورت دچار صدمه و آسیب می­شود. بنابراین، اطمینان دادن به اینکه تکامل شبکه­ی هوشمند باعث افزایش آسیب پذیری سیستم قدرت انبوه نمی­گردد مهم می­باشد اما تا حدی از اهداف قابلیت اطمینان سیستم قدرت انبوه صنعت حمایت می­کند.

کمیته­ی برنامه ریزی NERC برای بررسی کردن کارکردهای سیستم­های هوشمندی کردن امکان یکپارچگی و مجتمع سازی موفق میسر می کند توانسته است نیروی کار شبکه­ی هوشمند (SGTF) شکل دهد. فصل SGTF هر یک از موضوعات و نگرانی­های شبکه­ی هوشمند را با توجه به قابلیت اطمینان سیستم قدرت انبوه مشخص و توضیح می­دهد و ویژگی­های قابلیت اطمینان شبکه­ی هوشمند و نحوه­ی تأثیر احتمالی آنها بر روی برنامه ریزی سیستم قدرت انبوه و فرایندهای طراحی و عملیاتی و ابزارهایی که برای حفظ قابلیت اطمینان مورد نیاز هستند را می­سنجد.

فهرست مطالب

چکیده1

1- مقدمه. 9

تعریف و پیش بینی شبکه هوشمند. 12

فصل اول: خلاصه قانونی و ضوابط

1-1- مقدمه. 16

1-2- خلاصه ضوابط و قوانین امریکا16

1-2-1- کنگره ایالت متحده16

1-2-2- FERC سیاست شبکه هوشمند 14 ژولای 2009. 18

1-2-3- دایره انرژی ایالات متحده18

1-2-4- کمیسیون ارتباطات فدرال ایالت متحده (FCC)19

1-3- خلاصه ضوابط دولتی ایالت متحده:21

1-4- خلاصه ضوابط و قوانین کانادا22

فصل دوم: شاخصه ها و ارزیابی تکنولوژی

2-1- مقدمه. 25

2-2- ادغام تکنولوژی شبکه هوشمند در سیستم انبوه نیرو:25

2-3- قابلیت اطمینان تکنولوژی اطلاعات و ادغام سیستم کنترل.. 27

2-4- ارزیابی تکنولوژی.. 29

2-5- تکنولوژیهای شبکه ی هوشمند روی سیستم انبوه نیرو. 30

2-6- ابزار phasor. 32

2-7- کیفیت نیرو و کنترل جریان.. 33

2-8- واحدهای ترمینال از راه دور (RTNS):38

2-9- تجهیزات انتقال.. 40

2-10- سیستم انبوه نیرو: ابزار رو به تکامل.. 44

2-11- سیستمهای تقویت بارپخش پیشرفته:50

فصل سوم: تکنولوژیهای شبکه هوشمند روی سیستم توزیع

3-1- تکنولوژیهای شبکه هوشمند روی سیستم توزیع:55

3-2- تولید نیروی توزیع شده و ذخیره آن:57

3-3- سیستم توزیع- سیستمهای موجود. 60

3-4- روان سازی بار تحت فرکانس:61

3-5- تامین انتقال الکتریکی تقاضا63

3-6- سیستم توزیع- سیستمهای در حال توسعه. 66

3-7- سیستمهای اتومات صنعتی.. 68

فصل چهارم: طرح ریزی و عملکرد با شبکه هوشمند

4-1- مقدمه. 72

4-2- ریسک های قابلیت اطمینان سیستم نیروی انبوه72

4-3- عملکردهای مختص در زمان وقوع حادثه:77

4-4- ارزیابی های پس از عملکرد:78

4-5- طرح ریزی طولانی مدت: مقولههای مرتبط به سیستم نیرو. 78

4-6- ملزومات شبیه سازی و طراحی.. 80

4-7- بلایای طبیعی.. 83

4-8- منابع توزیع شده و شبکههای کوچک و ادغام منابع قابل احیاء:85

4-9- منابع توزیعی.. 98

4-10- عملیات زمان واقعی.. 98

4-10-1- نقص ها98

4-10-2- خطرات در عملیات... 99

4-10-3- کنترل توزیعی و مرتبهای (نظارتی) زمان واقعی:100

4-11- ارزیابی عملیات... 103

4-11-1- نیازهای ماتریسهای جدید کارایی سیستم.. 103

4-12- سایر ملاحظات... 104

4-12-1- تغییر دیدگاه سازمانی.. 104

4-12-2- موضوعات مربوط به امید به زندگی.. 104

4-12-3- تداوم تجارت... 105

4-12-4- پیادهسازی تکاملی.. 106

4-12-5- نیازهای R و D... 106

4-13- کشفیات فصل.. 108

فصل پنجم: تأمین cyber برای شبکهی هوشمند

5-1- مقدمه. 111

5-2- از دست رفتن سیستمهای مرکز کنترل.. 115

5-3- سیستمهای ارتباطات... 116

5-4- بیسیم.. 118

5-5- ساختار فرمان و کنترل.. 119

5-6- اهمیت کنترل و نظارت متمرکز زمان واقعی.. 121

5-7- از دست دادن کنترل و ارتباطات... 121

5-8- دلایل از دست رفتن کنترل و ارتباطات... 123

5-9- محلهای بالقوه برای از دست رفتن کنترل یا ارتباطات... 124

5-10- پیامدهای از دست رفتن کنترل و ارتباطات... 124

5-11- مدل امنیتی عمیق دفاعی.. 126

5-12- مدیریت ریسک... 129

5-13- نیاز به فراند تصدیق قوی و قابل تطبیق.. 130

5-14- هماهنگی استانداردها و تکامل فرایند. 131

5-15- افزایش پیچیدگی در اداره کردن دارایی.. 134

5-16- برقراری تعادل در منابع داخلی و خارجی ریسک سیستم.. 137

5-17- استفاده از تعیین استاندارد ریسک برای مجتمع سازی و یکپارچگی شبکهی هوشمند. 138

5-18- ریسکهای نامشخص در هنگام استنتاج شبکهی هوشمند. 139

5-19- سایر ملاحظات... 143

5-19-1- امنیت فیزیکی دارایها در خارج از مرکز کنترل.. 143

5-19-2- برنامه ریزی متداوم و برنامه ریزی حادثه. 147

5-20- نیازهای R&D... 149

5-20-1- امنیت cyber. 149

5-21- محاسبهی تودهی انبوه151

5-22- توانایی های محاسبه. 153

5-23- کشفیات فصل.. 154

فصل ششم: نتایج و پیشنهادات

6-1- نتایج و پیشنهادات... 156

6-2-پیشنهادات... 158

ضمیمه 1: استانداردهای شبکهی هوشمند و قابلیت اطمینان.. 159

منابع.. 162

 فهرست جداول

عنوان صفحه

جدول 1– مجتمع سازی موفق ابزارها و سیستم­های شبکه هوشمند7

جدول 2- تکنولوژی­های شبکه­ی هوشمند- سیستم­ها و ابزارها 29

جدول 3: تاثیرات محتمل شبکه هوشمند70

دانلود شبکه های توزیع هوشمند برق